0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
public class DivMinus {
public static int div(int x, int y) {
int res = 0;
while (x >= y && y > 0) {
x = x-y;
res = res + 1;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
div(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 17 rules for P and 8 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
958_0_div_Load(x1, x2, x3, x4) → 958_0_div_Load(x2, x3, x4)
Filtered duplicate args:
958_0_div_Load(x1, x2, x3) → 958_0_div_Load(x2, x3)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 0 && x1[0] <= x0[0] →* TRUE)∧(958_0_div_Load(x1[0], x0[0]) →* 958_0_div_Load(x1[1], x0[1]))∧(x1[0] →* x1[1]))
(1) -> (0), if ((958_0_div_Load(x1[1], x0[1] - x1[1]) →* 958_0_div_Load(x1[0], x0[0]))∧(x1[1] →* x1[0]))
(1) (&&(>(x1[0], 0), <=(x1[0], x0[0]))=TRUE∧958_0_div_Load(x1[0], x0[0])=958_0_div_Load(x1[1], x0[1])∧x1[0]=x1[1] ⇒ 958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0])≥NonInfC∧958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0])≥COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧<=(x1[0], x0[0])=TRUE ⇒ 958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0])≥NonInfC∧958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0])≥COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (&&(>(x1[0], 0), <=(x1[0], x0[0]))=TRUE∧958_0_div_Load(x1[0], x0[0])=958_0_div_Load(x1[1], x0[1])∧x1[0]=x1[1]∧958_0_div_Load(x1[1], -(x0[1], x1[1]))=958_0_div_Load(x1[0]1, x0[0]1)∧x1[1]=x1[0]1 ⇒ COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[1], x0[1]), x1[1])≥NonInfC∧COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[1], x0[1]), x1[1])≥958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])∧(UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥))
(9) (>(x1[0], 0)=TRUE∧<=(x1[0], x0[0])=TRUE ⇒ COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[0], x0[0]), x1[0])≥NonInfC∧COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[0], x0[0]), x1[0])≥958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], -(x0[0], x1[0])), x1[0])∧(UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥))
(10) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x1[0] ≥ 0)
(11) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x1[0] ≥ 0)
(12) (x1[0] + [-1] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x1[0] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] + x1[0] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] + x1[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(958_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(958_0_div_Load(x1, x2)) = [-1]x2 + [-1]x1
POL(COND_958_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[1], x0[1]), x1[1]) → 958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])
958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0]) → COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])
COND_958_1_MAIN_INVOKEMETHOD(TRUE, 958_0_div_Load(x1[1], x0[1]), x1[1]) → 958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[1], -(x0[1], x1[1])), x1[1])
958_1_MAIN_INVOKEMETHOD(958_0_div_Load(x1[0], x0[0]), x1[0]) → COND_958_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 0), <=(x1[0], x0[0])), 958_0_div_Load(x1[0], x0[0]), x1[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer